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I. HETEROGENEOUS MEAN-FIELD THEORY

To quantify the asymmetrical coevolution dynamics, we
develop a heterogeneous mean-field theory. The outbreak
threshold and the fraction of infected or informed nodes in
the final state are the two quantities that control the outcome.
For the information spreading, the densities of susceptible, in-
formed, and recovered nodes with degree kA at time t are de-
noted by sAkA

(t), ρAkA
(t), rAkA

(t), respectively. Analogously,
for the disease spreading, the densities of the susceptible, in-
fected, recovered and vaccinated nodes with degree kB at time
t are denoted by sBkB

(t), ρAkB
(t), rBkB

(t) and vBkB
(t), respective-

ly.
We first study the time evolution of information spreading

on a communication network, i.e., layer A. During a short
period of time [t, t + dt] there are two ways for a susceptible
node denoted by uA with degree kA to become informed, (i)
node uA can acquire the information from its neighbors with
a probability λAkAΘA(t)dt, where ΘA(t) is the probability
that a susceptible node connects to an informed neighbor on
uncorrelated layer A, which is given by [1]

ΘA(t) =
1

⟨kA⟩
∑
k′
A

(k′A − 1)PA(k
′
A)ρ

A
k′
A
(t), (1)

where ⟨kA⟩ is the average degree of layer A, or (ii) node uA
can acquire the information when its counterpart node uB on
layer B becomes infected. From a mean-field perspective,
node uA acquires the information from its counterpart node
with a probability λB

∑
kB

PB(kB)kBΘB(t)dt, where ΘB(t)
(to be defined later) is the probability that a susceptible node
on layer B will connect to an infected neighbor. Taking the
above two cases into consideration, the evolution equation of
the susceptible node with degree kA on layer A can be written
as

dsAkA
(t)

dt
= −sAkA

(t)[λAkAΘA(t) + λB⟨kB⟩ΘB(t)]. (2)

The increase in ρAkA
(t) is equal to the decrease in sAkA

(t), and

∗ tangminghan007@gmail.com

thus the evolution equations for ρAkA
(t) and rAkA

(t) are

dρAkA
(t)

dt
= sAkA

(t)[λAkAΘA(t) + λB⟨kB⟩ΘB(t)]− ρAkA
(t),

(3)
and

drAkA
(t)

dt
= ρAkA

(t), (4)

respectively.
We next investigate the evolution of the disease spreading

on layer B, the contact network. During a short time period
[t, t + dt], a susceptible node uB with degree kB in layer B
can either be infected or vaccinated. The probability of node
uB being infected is λBkBΘB(t)dt, where

ΘB(t) =
1

⟨kB⟩
∑
k′
B

(k′B − 1)PB(k
′
B)ρ

B
k′
B
(t), (5)

where ⟨kB⟩ is the average degree of layer. Node uB can
be vaccinated only when (1) its counterpart node uA is in
the informed state and (2) it is aware of the danger on
layer B, i.e., the number of infected neighbors nB

I does
not fall below static threshold ϕ. Since a node in lay-
er A can be susceptible only when its counterpart is sus-
ceptible, node uB meets the first condition with probability∑

kA
PA(kA)s

A
kA

kAλAΘA(t). The probability of the second
immunization condition for node uB is

Υ(kB, t) =

kB∑
nB
I =ϕ

Ω(kB, n
B
I , t), (6)

where Ω(kB, n
B
I , t) is the probability that a susceptible node

on layer B with degree kB has nB
I infected neighbors, which

can be expressed as

Ω(kB, n
B
I , t) =

(
kB
nB
I

)
[ΘB(t)]

nB
I [1−ΘB(t)]

kB−nB
I . (7)

When node uB simultaneously fulfills both conditions, it will
be vaccinated with probability p. Thus the probability that a
susceptible node on layer B with degree kB will be vaccinated
is

Ψ(kB, t) = pΥ(kB, t)
∑
kA

PA(kA)s
A
kA

kAλAΘA(t). (8)
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We can use these analyses to obtain the time evolution e-
quations for the susceptible, infected, recovered, and vacci-
nated nodes on layer B, i.e.,

dsBkB
(t)

dt
= −λBkBs

B
kB
(t)ΘB(t)−Ψ(kB, t), (9)

dρBkB
(t)

dt
= λBkBs

B
kB
(t)ΘB(t)− ρBkB

(t), (10)

drBkB
(t)

dt
= ρBkB

(t), (11)

and

dvBkB
(t)

dt
= Ψ(kB, t), (12)

respectively.
We can describe the asymmetrical coevolution dynamics of

information and disease spreading using Eqs. (2)-(4) and (9)-
(12), which allow us to obtain the density of each distinct state
on layer A and B at time t, i.e.,

χh(t) =
∑
kh

Ph(kh)χ
h
hk
(t), (13)

where h ∈ {A,B} and χ ∈ {S, I,R, V }. When t → ∞,
in the steady state, the final sizes of information and disease
systems are RA and RB, respectively.

II. LINEAR ANALYSIS FOR THE INFORMATION
THRESHOLD

Initially only a tiny fraction of nodes on layers A and B are
informed or infected, and most are susceptible. Thus we have
sAkA

≈ 1, sBkB
≈ 1. Linearizing Eqs. (3) and (10), we have

dρAkA
(t)

dt
= λAkAΘA(t) + λB⟨kB⟩ΘB(t)− ρAkA

(t),

dρBkB
(t)

dt
= λBkBΘB(t)− ρBkB

(t). (14)

We rewrite Eq. (14) in matrix form as

dρ⃗

dt
= Cρ⃗− ρ⃗, (15)

where

ρ⃗ ≡ (ρAkA=1, . . . , ρ
A
kA,max

, ρBkB=1, . . . , ρ
B
kB,max

)T ,

and

C =

(
CA DB

0 CB

)
. (16)

The elements in matrix C are

CA
kA,k′

A
= [λAkA(k

′
A − 1)PA(k

′
A)]/⟨kA⟩,

CB
kB,k′

B
= [λBkB(k

′
B − 1)PB(k

′
B)]/⟨kB⟩,

and

DB
kB,k′

B
= λB(k

′
B − 1)PB(k

′
B).

If ρA(t) increases exponentially at the initial time, a finite
fraction of nodes on layer A will receive information. If
it does not, only a tiny fraction of nodes will receive infor-
mation. Thus the critical effective information transmission
probability is

λA
c =

1

Λ1
C

, (17)

where Λ1
C is the maximal eigenvalue of matrix C, from which

we obtain

Λ1
C = max{Λ1

A,Λ
1
B}, (18)

where Λ1
A and Λ1

B are the maximal eigenvalues of the adjacent
matrix of layers A and B, respectively.
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